Худей и больше не толстей

Из чего делают мел: меловые отложения, добыча, состав и применение

Введение

Во всем мире не найдется человека, который бы за свою жизнь не столкнулся с мелом. В миллионах классов на Земле школьники пишут мелом на доске. А что бы делал учитель без мела? Каждый из нас хорошо представляет себе обычный, ничем не примечательный школьный мелок. И не только представляет, но и не раз держал в руках во время учёбы. А сколько истин было открыто с помощью кусочка мела, сколько совершено открытий! И до сих пор школьный учитель, держа в руке незаметный, но в тоже время незаменимый кусочек мела, совершает чудеса.

В настоящий момент еще не найдена альтернатива известкового мела (восковый мел не подходит для использования на школьных досках). Сейчас в школах появляются интерактивные, маркерные доски и другие средства обучения. Однако школьный мел как существовал много сотен лет в школах, так и остался до сих пор. Качество школьного мела это проблема любого учебного заведения. Наша школа не является исключением. Я решила выяснить причину того, отчего школьный мел то сыпется, то оставляет чуть заметный след, а чаще царапает доску.

Актуальность работы заключается в том, что мел, используемый потребителем, отличается по качеству. А всегда ли качество связано с безопасностью для здоровья?Проблема: низкое качество школьного мела может привести к заболеваниям учащихся и педагогов.Цель: Изучение физических и химических свойств и влияние на организм человека школьного мела.

Задачи:
1. Собрать достоверную информацию о происхождении, составе, свойствах и применении школьного мела.
2. Провести эксперименты по изучению качественного и количественного состава различных сортов школьного мела, пригодности для использования.
3. Провести социологический опрос на выявление действия мела на организм человека.
4. Оценить влияние мела на здоровье человека.

В ходе работы использованы следующие методы исследования:
— поиск и анализ достоверной информации из достоверных источников;
— химический эксперимент;
— анкетирование учителей и анализ результатов.

Применение

Используется как белый пищевой краситель Е170. Являясь основой мела, используется для письма на школьных досках. Используется в быту для побелки потолков, покраски стволов деревьев, для подщелачивания почвы в садоводстве.

Использование в пищевой промышленности

  • Е170 учавствует в организме в процессах свертывания крови;
  • применяется в медицине как биологически активная добавка;
  • используется в приготовлении различных кондитерских кремов и хлеба;
  • используется в соевом молоке как часть кальциевой диеты;
  • применяется для окрашивания различных конфет (например, драже);
  • используется в качестве антислеживающего агента и разделителя в сухих молочных продуктах;
  • является антикристаллизатором в сгущеном молоке;
  • стабилизирует консистенцию джемов и желе;
  • вместе с другими карбонатами может применятся при изготовлении различных сыров (плавленных, домашних);
  • не дает выпасть осадку.

Массовое производство/использование

Таблетки из карбоната кальция

Очищенный от посторонних примесей, карбонат кальция широко используется в бумажной и пищевой промышленности, при производстве пластмасс, красок, резины, продукции бытовой химии, в строительстве. Производители бумаги используют карбонат кальция одновременно в качестве отбеливателя, наполнителя (заменяя им дорогостоящие волокна и красители), а также раскислителя. Производители стеклянной посуды, бутылок, стекловолокна используют карбонат кальция в огромных количествах в качестве источника кальция — одного из основных элементов, необходимых для производства стекла. Широко используется при производстве продукции личной гигиены (например, зубной пасты), и даже в медицинской промышленности. В пищевой промышленности часто используется в качестве антислеживающего агента и разделителя в сухих молочных продуктах. При употреблении сверх рекомендованной дозы (1,5 г в день) может вызывать молочно-щелочной синдром (синдром Бернетта). Рекомендован при болезнях костных тканей.

Производители пластмассы — одни из основных потребителей карбоната кальция (более 50 % всего потребления). Используемый в качестве наполнителя и красителя, карбонат кальция необходим при производстве поливинилхлорида (PVC), полиэфирных волокон (кримплен, лавсан, и т. п.), полиолефинов. Изделия из данных видов пластмасс распространены повсеместно — это трубы, сантехника, кафельная плитка, черепица, линолеум, ковровые покрытия, и т. п. Карбонат кальция составляет порядка 20 % красящего пигмента, используемого при производстве красок.

Строительство

Строительство — еще один из основных потребителей карбоната кальция. Шпатлевки, различные герметики — все они содержат карбонат кальция в значительных количествах. Также, карбонат кальция является важнейшим составным элементом при производстве продукции бытовой химии — средств для чистки сантехники, кремов для обуви.

Карбонат кальция также широко используется в очистительных системах, как средство борьбы с загрязнением окружающей среды, при помощи карбоната кальция восстанавливают кислотно-щелочной баланс почвы.

кальция карбонат: основная информация о пестициде

Описание: Неорганическое вещество{сущность} со свойствами мультидействия, действующими как гербицид, фунгицид и/или микробиоцид.

Год официальной регистрации: —

Выпуск пестицидов на рынок (директива 91/414/ЕЭС), статус:

Статус Приложение 1
Досье докладчика / содокладчика Испания
Дата включения истекает 31/08/2019

Разрешен к применению (V) или известен (#) в следующих Европейских странах:

Основные сведения:

Тип пестицида Гербицид, Фунгицид, Микробиоцид, Составное вещество другого продукта
Другой тип pH adjuster; Carrier
Группа по химическому строению Неорганические соединения
Характер действия Защитный, запрещая грибковым спорам и болезнетворным микроорганизмам ввод ведущих тканей
Регистрационный номер CAS 471-34-1
Шифр КФ (Код Фермента) 207-439-9
Шифр Международного совместного аналитического совета по пестицидам (CIPAC) Не определен
Химический код Агентства по охране окружающей среды США (US EPA) 073502
Химическая формула CaCO3
SMILES .C()=O
Международный химический идентификатор (InChI) InChI=1/CH2O3.Ca/c2-1(3)4;/h(H2,2,3,4);/q;+2/p-2
Структурная формула
Молекулярная масса (г/моль) 100.09
Chemical Перевод calcium carbonate
Другая информация
Устойчивость к гербициду по HRAC Не определяется
Устойчивость к инсектициду по IRAC Не определяется
Устойчивость к фунгициду по FRAC Не определяется
Физическое состояние Белый порошок

Выпуск:

Производители пестицида
Коммерческие названия препаратов, содержащих д.в.
С этим веществом связаны:
Оценка риска от пестицида для местной экологии (Англия) No Великобритания approval for use
Препаративная форма и особенности применения

E170 Карбонаты кальция (мел)

Карбонаты кальция (Calcium carbonate, chalk, карбонат кальция, гидрокарбонат кальция, мел, E170) — соль угольной кислоты, краситель белого цвета.

Разновидности карбоната кальция:

(i) Карбонат кальция;

(ii) Гидрокарбонат кальция.

В природе встречается в виде минералов кальцита, арагонита и ватерита. Карбонат кальция является главной составной частью известняка, мела и мрамора. Используется практически во всех областях промышленности, а также в медицине.

Также, карбонат кальция является важнейшим составным элементом при производстве продукции бытовой химии – средств для чистки сантехники, кремов для обуви, а также широко используется при производстве продукции личной гигиены (например зубной пасты).

Карбонат кальция также широко используется в очистительных системах, как средство борьбы с загрязнением окружающей среды, при помощи карбоната кальция восстанавливают кислотно-щелочной баланс почвы.

Добывается карбонат кальция из полезных ископаемых. Кроме того, для пищевой промышленности самый чистый краситель Е170 может производится из мрамора.

В то же время при чрезмерном поступлении карбоната кальция в организм и его переизбытке у человека может возникнуть молочно-щелочной синдром , который имеет высокое токсическое действие и в тяжелых случаях может приводить к смерти. При небольшой передозировке карбоната кальция у человека может возникнуть гиперкальциемия – осложнения, которые включают рвоту, боли в животе и изменения психического состояния. Рекомендуемая ежедневная профилактическая доза приема карбоната кальция составляет от 1,2 до 1,5 г в день. В продуктах питания содержание добавки Е170 в разы меньше, что говорит о том, что краситель Е170 можно отнести к безопасным пищевым добавкам.

В пищевой промышленности добавка Е170 используется как краситель, регулятор кислотности, разрыхлитель, препятствующий слёживанию и комкованию.

Кроме того карбонат кальция широко используется в различных областях промышленности:

Пищевая добавка Е170 считается безвредной и разрешена для использования в пищевой промышленности на территории РФ, Украины и большинстве других стран.

Кроме того, нередко краситель E170 Карбонаты кальция можно увидеть в составе консервированного питания для детей, концентрированного молока и сливок, некоторых видов твердых сыров, какао-порошке, а также шоколаде, где он играет роль стабилизатора. Широко используются свойства красителя E170 Карбонаты при производстве виноградного сока.

Химический состав красителя E170 Карбонаты кальция позволяет использовать его и в промышленном производстве – например, при изготовлении бумаги, стекольных товаров (бутылок) и многого другого. Также известно применение мела в качестве удобрения для почвы – он уменьшает ее кислотность.

Список источников

1. Карцова А.А. Химия без формул. / А.А. Карцова; – СПб.: Авалон, 2005. С. 101-103.
2. Мел // Естествознание: Энциклопедический словарь / Сост. В.Д. Шолле. – М.: Большая российская энциклопедия, 2002. – 543 с.
3. Мел // Даль В. Толковый словарь живого великорусского языка: в 4 т. М.: Рус. яз., 1998 Т 4. – 688 с.
4. Ольгин О.М. Опыты без взрывов. / О.М.Ольгин; – М.: Химия, 1995. 136 с.
5. Справочник школьника. Химия / Сост. М. Кременчугская, С. Васильев. М.: Филолог, 1995. 380 с.
6. Степин Б.Д. Аликберова Л.Ю. Книга по химии для домашнего чтения. / Б.Д. Степин, Л.Ю. Алкберова. – М.: Химия, 1995. 270 с.
7. Я познаю мир: Детская энциклопедия: Химия / Авт.-сост. Л.А. Савина. – М.: АСТ, 1995. – 448 с.

Как произошел мел?

Мел является природным материалом и добывается как полезное ископаемое. В основе своей он представляет собой кальциевые отложения, сформированные из остатков древних земных организмов.

При производстве мела и мелосодержащей продукции применяют уже обработанный мел.

Природные меловые залежи зачастую содержат различные нежелательные примеси – камни, песок и разнообразные минеральные частицы. Поэтому мел, добытый на месторождениях, ломают и смешивают с водой таким образом, чтобы получить взвесь.

При этом тяжелые примеси опускаются на дно, а легкие частицы кальция направляют в специальный резервуар, где их после добавления специального склеивающего вещества высушивают, превращая в мел, которым можно рисовать.

Необработанный мел из меловых карьеров используют в строительных целях для получения извести.

Предлагаем вашему вниманию другую статью о происхождении камня гранита, его составе и лечебных свойствах.

Чем можно заменить мел, если очень хочется его съесть?

Какой мел можно есть?

Фармацевтические компании выпускают глюконат кальция, который является аналогом природного мела, напоминает схожим вкусом, однако практически безопасен для употребления. Большой пользы таблетки он не принесут, но избавят от пагубного пристрастия жевать бытовую химию.

Можно и даже нужно, если получите одобрение доктора. Небольшие порции вреда не причинят, а вот увеличенное потребление препарата может вызвать запоры, нарушить обмен веществ, привести к известкованию слизистого эпителия, соединительных тканей и даже развитию ужасных заболеваний: , панкреатита, инфаркта.

Месторождения мела

Самые богатые месторождения мела расположены в Европе. Его можно встретить от Западного Казахстана до Британских островов. Мощность меловых пластов достигает сотен метров. В районе Харькова обнаружены отложения с мощностью пластов до 600 м. Огромный меловой пояс тянется через всю Европу, захватывая северную часть Франции, юг Англии, Польшу, Украину, Россию. Часть отложений смещена в Азию; запасы мела имеются в Ливийской пустыне и в Сирии.

В США месторождения мела отмечены только в южных и центральных штатах. Однако мел там низкого качества; по этой причине его приходится ввозить в США из Дании, Великобритании и Франции.

Запасы мела распределяются очень неравномерно. До половины качественного мела с хорошим содержанием карбоната кальция сосредоточено в Российской Федерации. В абсолютных цифрах запасы мела в России оцениваются в 3300 млн т. Неограниченные прогнозные месторождения мела расположены в Белгородской области. Очень качественный мел с низким содержанием примесей некарбонатного типа добывают в Воронежской области.

Химические свойства карбоната натрия. Химические реакции карбоната натрия:

Карбонат натрия – это средняя соль, образованная слабой кислотой – угольной (H2CO3) и сильным основанием – гидроксидом натрия (NaOH).

Водные растворы Na2CO3 имеют щелочную реакцию.

Для карбоната натрия характерны следующие химические реакции:

1. реакция карбоната натрия и углерода:

Na2CO3 + 2C → 2Na + 3CO (t = 900-1000 oС).

В результате реакции образуются оксид углерода и натрий.

2. реакция карбоната натрия и брома:

3Br2 + 3Na2CO3 → 5NaBr + NaBrO3 + 3CO2.

В результате реакции образуются бромид натрия, бромат натрия и углекислый газ. В ходе реакции карбонат натрия используется в виде концентрированного горячего раствора.

3. реакция карбоната натрия и йода:

3Na2CO3 + 3I2 → 5NaI + NaIO3 + 3CO2.

В результате реакции образуются йодид натрия, йодат натрия и углекислый газ. В ходе реакции карбонат натрия используется в виде концентрированного горячего раствора.

4. реакция карбоната натрия и хлора:

3Na2CO3 + 3Cl2 → 5NaCl + NaClO3 + 3CO2.

В результате реакции образуются хлорид натрия, хлорат натрия и углекислый газ. В ходе реакции карбонат натрия используется в виде концентрированного горячего раствора.

5. реакция карбоната натрия и азотной кислоты:

Na2CO3 + 2HNO3 → 2NaNO3 + CO2 + H2O.

В результате реакции образуются нитрат натрия, углекислый газ и вода. В ходе реакции азотная кислота используется в виде разбавленного раствора.

6. реакция карбоната натрия и угольной кислоты:

H2CO3 + Na2CO3 → 2NaHCO3.

В результате реакции образуется гидрокарбонат натрия.

7. реакция карбоната натрия и ортофосфорной кислоты:

Na2CO3 + H3PO4 → Na2HPO4 + H2O + CO2,

Na2CO3 + 2H3PO4 → 2NaH2PO4 + H2O + CO2,

3Na2CO3 + 2H3PO4 → 2Na3PO4 + 3H2O + 3CO2 (to).

В результате реакции в первом случае образуются гидроортофосфат натрия, углекислый газ и вода, во втором случае – дигидроортофосфат натрия, углекислый газ и вода, в третьем случае – ортофосфат натрия, углекислый газ и вода. В ходе реакции в первом и третьем случае ортофосфорная кислота используется в виде разбавленного раствора, во втором – в виде концентрированного раствора. Карбонат натрия в первой и второй реакциях используется в виде разбавленного раствора, в ходе третьей – в виде концентрированного раствора. Третья реакция протекает при кипении.

Аналогичные реакции протекают и с другими кислотами.

8. реакция карбоната натрия и фтороводорода:

Na2CO3 + 2HF → 2NaF + CO2 + H2O.

В результате реакции образуются фторид натрия, углекислый газ и вода. В ходе реакции фтороводород используется в виде разбавленного раствора.

9. реакция карбоната натрия и оксида кремния:

Na2CO3 + SiO2 → Na2SiO3 + CO2 (t = 1150 oС).

В результате реакции образуются углекислый газ и метасиликат натрия.

10. реакция карбоната натрия и оксида серы:

SO2 + Na2CO3 → Na2SO3 + CO2,

2SO2 + Na2CO3 → Na2S2O5 + CO2 (t = 40-60oС).

В первом случае в результате реакции образуются углекислый газ и сульфат натрия. В ходе реакции карбонат натрия используется в виде концентрированного раствора. Реакция протекает при комнатной температуре.

В первом случае в результате реакции образуются углекислый газ и дисульфит натрия. В ходе реакции карбонат натрия используется в виде концентрированного раствора. Реакция протекает при температуре 40-60oС.

11. реакция карбоната натрия и оксида алюминия:

Al2O3 + Na2CO3 → 2NaAlO2 + CO2 (t = 1000-1200 oС).

В результате реакции образуются углекислый газ и алюминат натрия.

12. реакция карбоната натрия и оксида железа:

Fe2O3 + Na2CO3 → 2NaFeO2 + CO2 (t = 800-900 oС).

В результате реакции образуются углекислый газ и феррит натрия.

13. реакция карбоната натрия и воды (гидролиза карбоната натрия):

Na2CO3 + H2O ⇄ NaHCO3 + NaOH.

В результате реакции образуются гидрокарбонат натрия и гидроксид натрия. Реакция носит обратимый характер.

14. реакция карбоната натрия, оксида кальция и воды:

Na2CO3 + CaO + H2O → CaCO3 + 2NaOH.

В результате реакции образуются карбонат кальция и гидроксид натрия.

15. реакция карбоната натрия, оксида углерода и воды:

Na2CO3 + CO2 + H2O → 2NaHCO3.

В результате реакции образуется гидрокарбонат натрия. Данная реакция представляет собой способ получения питьевой соды путем пропускания оксида углерода через холодный раствор карбоната натрия.

16. реакция карбоната натрия и гидроксида кальция (каустификации соды):

Na2CO3 + Ca(OH)2 → CaCO3 + 2NaOH.

В результате реакции образуются карбонат кальция и гидроксид натрия. Данная реакция представляет собой  метод получения гидроксида натрия. Равновесие реакции смещено в сторону образования NaOH за счет плохой растворимости CaCO3.

17. реакция термического разложения карбоната натрия:

Na2CO3 → Na2O + CO2 (t = 1000 oС).

В результате реакции образуются углекислый газ и оксид натрия.

Скопления мела

Накопление меловых залежей началось в так называемый меловой период, охватывающий период в 80 млн. лет. Около 20% осадочных пород Земли включают в свой состав мел.

Месторождения мела:

  • К крупнейшим меловым залежам причисляют Белые скалы Дувра, меловые пещеры во французском городе Шампань и меловые скалы Монс Клинт в Дании.
  • На территории Украины меловые горные месторождения толщиной до 600 метров располагаются южнее Харькова.
  • Наиболее крупные месторождения Воронежской области – Копанищенское, Россошанское и Бутурлинское. Город Белгород, предположительно, получил своё название благодаря местным меловым залежам.

Состав

Состав мела определяется местом его формирования, поэтому этот минерал из разных частей света может содержать отличающиеся по составу и процентному содержанию части, но в основном это всегда преобладание кальция и его соединений.

Физический

В физическом плане мел содержит в себе:

  • мелкодисперсный кальцит, источником которого являются кокколитофориды или одноклеточные гаптофитовые планктонные водоросли (чуть менее 50 %);
  • остатки, обломки скелетов, панцирей морских моллюсков и им подобных существ, имеющие много кальция в твердых тканях (примерно 10 %);
  • раковины моллюсков фораминифер, в избытке содержащие в составе кальций и его соединения (около 10 %);
  • силикат, вошедший в состав образовавшегося мела из так называемого геологического мелкодисперсного мусора, состоящего из песка и остатков горных пород, с помощью ветра занесенных в место формирования меловых отложений (приблизительно 3 %).

Кальцит, содержащийся в меле, может быть как аутогенного, так и биогенного происхождения. При этом биогенный или зоогенный состав обозначает наличие остатков отмерших микроорганизмов и продукты их жизнедеятельности, а аутогенный — все остальные пути формирования меловых отложений.

Химический

Если рассматривать структуру мела с химической точки зрения, он содержит в себе такие элементы и химические соединения:

  • от 47 % до 55 % — кальция карбонат (CaCO3);
  • до 43 % — газ углекислый (CO2);
  • до 6 % — кремния диоксид (SiO2, чем выше содержание кремния, тем крепче мел);
  • до 4 % — алюминия диоксид (Al2O3);
  • до 2 % — магния карбонат (MgCO3);
  • около 0,5 % — железо (Fe);
  • микроскопические псевдоморфозы (кристаллы) кальцита, полученные от ископаемых микроорганизмов радиолярий.

Наличие железа в меле подтверждается красноватыми разводами и оттенками на куске. Незначительная примесь кварца, находящаяся в меле, является полиморфной модификацией диоксида кремния.

Месторождения

Наиболее значительная полоса отложений мела распространена в Европе, от реки Эмба в Западном Казахстане до Великобритании. Их мощность достигает нескольких сотен метров (в районе Харькова — 600 м). Мощный меловой пояс простирается через весь Европейский континент, включая север Франции, южную часть Англии, Польшу, проходит через Украину, Россию и смещается в Азию — Сирию и Ливийскую пустыню. Запасы мела распределены по территориям неравномерно: около 48-50 % запасов качественного мела с высоким содержанием карбоната кальция и магния, минимальным содержанием вредных примесей сосредоточены в России; около 32-33 % на Украине и немногим более 12% в Белоруссии. Имеются небольшие по запасам месторождения в Казахстане, Литве и Грузии. Общие балансовые запасы мела в России оцениваются в 3300 млн. т. при неограниченных прогнозных запасах.

Запасы самого крупного Себряковского (Волгоградская область, Россия) месторождения мела для производства цемента 890 млн. т. Практически неограниченные прогнозные ресурсы мела сосредоточены в Белгородской области (Россия), где разведано 29 месторождений мела с суммарными запасами 1000 млн. т., наиболее крупными из которых являются Лебединское, Стойленское и Логовское. При этом на Лебединское и Стойленское месторождения приходится 75 % разведанных запасов мела Белгородской области. Эти два месторождения эксплуатируются по добыче железных руд, где мел является вскрышной породой. Месторождения мела Воронежской области относятся к туронконьякскому возрасту. Мел имеет высокое содержание (до98,5%) и низкое содержание некарбонатных примесей (менее 2%), обогащён амфорным кремнеземом, залегает мел в непосредственной близости к поверхности и прикрыт элювием мела или четвертичными отложениями. Характерной особенностью мела месторождения Воронежской области является его водонасыщенность (содержание влаги достигает 32%, что вызывает серьезные затруднения при его добыче и переработке).

Состав

В состав меловых отложений входят:

  • Фрагменты скелетов – примерно 10%. Это останки не только простейших, но и крупных многоклеточных животных.
  • Раковины древних моллюсков – 10 %. Среди них были животные с известняковыми панцирями – фораминиферы.
  • Частички известкового нароста водорослей – не более 40%. Большая часть известняковых отложений, вопреки распространенному мнению, образовалась из остатков простейших растений – кокколитофорид, а не благодаря раковинам фораминиферов. Кокколитофориды не вымерли, они прекрасно чувствуют себя на просторах мирового океана и сегодня, принимая участие в обмене углерода между океаном и атмосферой.
  • Измельченный кристаллический кальцит – не более 50%. Это природные минеральные образования сложного происхождения.
  • Нерастворимые силикаты – до 3%. Это минералы геологического происхождения – песок, осколки горных пород, заносимые в меловые отложения ветром и водой.Свойства мела

Большое влияние на свойства мела имеет влажность, воздействующая на его прочность и пластичность. Повышение влажности приводит к деформации, тогда как в сухой среде мел может рассыпаться даже от незначительного давления.

Насыщенная влагой порода прилипает к строительным инструментам. Именно поэтому строительные работы с использованием карбоната кальция проводят в странах с жарким и засушливым климатом. Прекрасным примером древней постройки из известняка является египетская пирамида Хеопса (Хуфу).

При минусовой температуре порода склонна к распаду на фрагменты в несколько миллиметров.

[arve url=»https://www.youtube.com/watch?v=hZZux-WpdDc» mode=»normal» align=»center»/]

Образование мела

Формирование и накопление известняковых отложений происходило  более восьмидесяти миллионов лет.

Фораминиферы – одноклеточные организмы, раковины которых послужили основой для образования сегодняшних меловых залежей. После смерти этих простейших их панцири опускались на дно океана, создавая фораминиферовые известняки.

Эти образования наряду с остатками одноклеточных растений кокколитофорид являются составляющей частью сегодняшних меловых скоплений. Спрессованные под давлением воды, остатки кокколитофорид и раковин древних моллюсков миллионы лет дополнялись скелетными останками рыб и животных.

Невзирая на то, что еще в 1953 году ученые объявили о преимущественной роли растений в образовании известняковых пород, среди обывателей до сих пор бытует мнение о главенстве фораминиферов.

Сферы использования мела

В качестве кладочного материала мел применять нецелесообразно из за крайне низкой твердости. Однако помещения, вырубленные в массивах меловых отложений веками сохраняются в первозданном виде и вполне пригодны для жизни.

Как добывают мел? Чаще всего – это открытые карьерные разработки. Полученные глыбы измельчают и помещают в воду. При перемешивании частички кальция всплывают. Впоследствии их высушивают и используют в различных целях. Не переработанные камни отправляют на обжиг для получения извести.

Строительным называют мел, который ранее использовали для побелки внутренних поверхностей помещений. Теперь эта сфера его применения сошла на нет, так как появилось много других, более совершенных отделочных материалов. Где используется мел?

  • Минерал включают в состав цементных смесей, когда нужно придать им мягкость.
  • В производстве стекла, лако-красочных материалов, резины, пластических масс, каучука, при создании композитных материалов на основе ПВХ.
  • Мел активно используют в ковровой и линолеумной промышленности. Он помогает регулировать вязкие свойства латексного клея, придавать изделиям прочность и улучшать теплосберегающие свойства.
  • Мел нашел применение при изготовлении комбикормов и почвенных удобрений.
  • Меловой порошок является основой для большинства косметических средств – губной помады, кремов, пудры.
  • Без мела не обходится бумажная и картонная промышленность.

Вреден ли мел? Абсолютно безопасен, и лучшим тому доказательством служит его использование при создании зубных паст и порошков. Больше того, нехватка кальция в организме человека вызывает желание съесть кусочек мела. В этом случае не следует употреблять мел для побелки или школьные мелки. В аптеках есть специальные препараты, например глюконат кальция.

Структура минерала

От структуры мела, то есть его внутреннего устройства, зависят физические свойства этого ископаемого минерала. В частности, твердость каждого куска мела прямо зависит от наличия в его структуре кремния и процентного содержания этого элемента. Рыхлые меловые породы очень легко ломаются в руках, и внешне более походят на известняк. Структура такого мелового отложения имеет плотность около восьмисот килограмм на каждый кубический метр. В то же время кристаллическая структура некоторых известняков достигает показателя в 2900 кг/м3.

Пористость мела или его рыхлость также влияют на сжимаемость этого вещества. Минимальное выдерживаемое давление на мел составляет 0,4 Мпа, а максимальное — 300 Мпа. Структура мокрого мела по отношению к сухому изменяется: он становится менее твердым и более хрупким.

Рыхлость меловой структуры предполагает его большую ломкость, или дробимость. Это значит, что такой мел легко надломить руками, не прилагая значительных усилий. Однако такое свойство внутреннего устройства хрупкого мела помогает очень просто и точно обрабатывать его и придавать нужную форму.

Как знакомить детей со свойствами мела

Впервые о карбонате кальция учащиеся узнают на вводных уроках химии, на которых дается понятие о чистых веществах и смесях, а также рассматриваются основные способы их разделения. Например, при проведении лабораторной работы учитель предлагает отделить друг от друга металлические опилки и древесную стружку с помощью магнита. Раствор сахара подвергают выпариванию и получают чистое кристаллическое вещество, а физические свойства мела и угля изучают после разделения двух веществ отстаиванием с последующим фильтрованием взвеси карбоната кальция в воде. Дидактический принцип преемственности и последовательности в изучении нового материала используется при ознакомлении учащихся с физическими явлениями и химическими реакциями. Проводится следующий опыт: в одну пробирку сливают растворы технической соды и хлорида кальция. Наблюдают помутнение раствора, а затем образование осадка. Это мел, его отфильтровывают и к полученному белому порошку по каплям добавляют хлоридную кислоту. Реакция идет с бурным выделением пузырьков углекислого газа. Как видим, программа по химии, 8 класс, физические свойства мела изучает вместе с главной химической особенностью вещества – его способностью к реакции с сильными кислотами, идущей с выделением CO2.

Воздействие на организм

Какие же есть полезные свойства этого вещества? Оно влияет на свертываемость крови и давление, поддержание стабильной сердечной деятельности, участвует в формировании костной ткани.

В медицине его применяют для:

  • лечения изжоги;
  • профилактики и лечения рахита;
  • профилактики и лечения кариеса (детям);
  • профилактики остеопороза.

Например, если вы пьете «Ренни» при изжоге, то прочитайте в инструкции его состав: карбонаты кальция и магния, так как они вступают в реакцию с соляной кислотой, находящейся в желудке, и нейтрализуют ее. Правда, тут есть свои тонкости, с которыми лучше посоветоваться с врачом.

Кстати, если вы решите, что вам срочно необходимо пополнить запасы кальция в организме, то не надо говорить, что вам нужен чистый кальций – это все-таки металл, причем, достаточно активный (вы же не глотаете железные гвозди, если у вас низкий гемоглобин). А вот его соединения будут в самый раз.

Я уже рассказывала о глюконате кальция и его применении. Иногда возникают споры, что лучше – глюконат или карбонат.

Если разбираться, то оба этих вещества хорошо усваиваются организмом, но глюконата требуется гораздо больше – в его составе кальция почти в четыре раза меньше, чем в карбонате.

Минус применения карбоната в том, что он нерастворим в воде, это может привести к образованию камней в почках.

Кстати, очень смешно читать про «органический» и «неорганический» кальций. Это – чушь! Нет таких понятий.

Сейчас наиболее «удобным» для организма считается цитрат кальция. Именно поэтому на разных «народных» форумах и сайтах можно встретить рецепты типа: истолочь куриную скорлупу, растворить её в лимонной кислоте  (лимонном соке) и пить.

В принципе, с точки зрения химии способ правильный. В результате химической реакции между карбонатом кальция, находящемся в скорлупе, и лимонной кислотой образуется соединение под названием цитрат кальция, которое хорошо растворяется в воде.

Но как это повлияет на организм, я сказать не могу, я не врач. По отзывам врачей, оно не влияет на образование камней в почках и на кислотность желудочного сока, хорошо усваивается организмом.

Честно скажу, я этим рецептом не пользовалась – я больше доверяю аптечным препаратам, где строго выверена дозировка, а основной компонент тщательно очищен от ненужных примесей.

Ну а что касается камней в почках, которыми нас так усердно пугают все, кому не лень, то прием препаратов кальция – далеко не единственный «провокатор» их образования. Если вы пьете кофе или/и газированные напитки в бешеных количествах, употребляете много сахара и соли, ведете сидячий образ жизни, то не надо потом грешить на кальций.

Вот, пожалуй, и все на сегодня.

Всем желаю хорошего настроения! Я недавно нашла забавное видео, поделюсь им с вами:

https://youtube.com/watch?v=nk_sOp5mK-s

Наталья Брянцева

Химические свойства мела

Химический состав мела определяется большим содержанием карбоната кальция с включениями карбоната магния. Мел может содержать также и некарбонатную часть, включая окислы металлов. Принято считать, что химическая формула этого вещества соответствует известной формуле карбоната кальция (CaCO3). Но реальный состав мела сложнее. В этом минерале около половины окиси кальция. До 43% состава мела приходится на углекислый газ; он находится в связанном состоянии. Примерно 2% общей массы вещества составляет окись магния. Обязательны, хотя и не слишком значительны, включения кварца. Мел со сравнительно высоким содержанием кремния имеет более высокую плотность. Мел содержит незначительное количество оксида алюминия, а окислы железа довольно часто окрашивают меловые пласты в красный цвет.

Карбонатная часть мела растворима в соляной и уксусной кислотах. Некарбонатная часть включает в себя кварцевый песок, глины, оксиды металлов. Некоторые их этих компонентов в кислотах не растворяются. В незначительном количестве в мел входят частицы магнезиального кальцита, а также доломита и сидерита.

Молекулярной формуле мела соответствует несколько типов кристаллических соединений, которые содержат в узлах решеток ионы.

Комментарии для сайта Cackle