Худей и больше не толстей

Что такое карбонат кальция, и где мы с ним можем встретиться

Мел пищевой: польза и вред для организма

Согласно мнению врачей, для употребления подходит только аптечный мел, очищенный от различных вредных включений и примесей. Он принесет организму исключительно пользу: укрепит стенки сосудов, восполнит дефицит ионов кальция. Принимать такой мел необходимо согласно возрастной дозировке.

Для любителей мела наиболее вкусным является именно пищевой, очищенный продукт. Несколько небольших кусочков в день вреда организму точно не причинят. Хотя, с другой стороны, и особой пользы ждать от этого «лакомства» не стоит. На недостаток полезных веществ в организме пищевой мел никак не повлияет.

Добыча и производство

Основными поставщиками карбоната кальция в мире являются Франция, Дания и Германия.

Более 70% производства сосредоточено в руках десяти крупных европейских компаний, из которых особо можно выделить Omya (Швейцария) и Imerys (Франция). С середины двухтысячных добычей CaCO3 стали активно заниматься китайцы, поэтому с каждым годом доля европейского производства мелкодисперсного мела падает, а китайского, соответственно, растет.

Есть меловые месторождения и на территории России: по количеству сырья лидирует Белгородская область, а по качеству (до 98, 5% карбоната кальция в породе) — Воронежская. Главными добытчиками мела в России являются АО «Мелстром», ООО «Воронежглавмел» и ОАО «Клинцевский силикатный завод».

Импортеры поставляют карбонат кальция полиэтиленовыми мешками по 25 кг. Отечественные поставщики фасуют мел в мешки по 30 кг или в мягкие контейнеры по 680 кг.

Нахождение в природе

Из-за высокой химической активности кальций в свободном виде в природе не встречается.

На долю кальция приходится 3,38 % массы земной коры (5-е место по распространенности (3-е среди металлов) после кислорода, кремния, алюминия и железа). Содержание элемента в морской воде — 400 мг/л.

Изотопы

Основная статья: Изотопы кальция

Кальций встречается в природе в виде смеси шести изотопов: 40Ca, 42Ca, 43Ca, 44Ca, 46Ca и 48Ca, среди которых наиболее распространённый — 40Ca — составляет 96,97 %. Ядра кальция содержат магическое число протонов: Z = 20. Изотопы 40 20Ca20 и 4820Ca28 являются двумя из пяти существующих в природе дважды магических ядер.

Из шести природных изотопов кальция пять стабильны. Шестой изотоп 48Ca, самый тяжёлый из шести и весьма редкий (его изотопная распространённость равна всего 0,187 %), испытывает двойной бета-распад с периодом полураспада (4,39 ± 0,58)⋅1019 лет.

В горных породах и минералах

Кальций, энергично мигрирующий в земной коре и накапливающийся в различных геохимических системах, образует 385 минералов (четвёртое место по числу минералов).

Большая часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты, гнейсы и т. п.), особенно в полевом шпате — анортите Ca[Al2Si2O8].

Кальцит

Довольно широко распространены такие минералы кальция, как кальцит CaCO3, ангидрит CaSO4, алебастр CaSO4·0.5H2O и гипс CaSO4·2H2O, флюорит CaF2, апатиты Ca5(PO4)3(F,Cl,OH), доломит MgCO3·CaCO3. Присутствием солей кальция и магния в природной воде определяется её жёсткость.

Осадочная порода, состоящая в основном из скрытокристаллического кальцита — известняк (одна из его разновидностей — мел). Под действием регионального метаморфизма известняк преобразуется в мрамор.

Миграция в земной коре

В естественной миграции кальция существенную роль играет «карбонатное равновесие», связанное с обратимой реакцией взаимодействия карбоната кальция с водой и углекислым газом с образованием растворимого гидрокарбоната:

 CaCO3 + H2O + CO2 ⇄ Ca(HCO3)2 ⇄ Ca2+ + 2HCO3

(равновесие смещается влево или вправо в зависимости от концентрации углекислого газа).

Огромную роль играет биогенная миграция.

В биосфере

Соединения кальция находятся практически во всех животных и растительных тканях (см. ниже). Значительное количество кальция входит в состав живых организмов. Так, гидроксиапатит Ca5(PO4)3OH, или, в другой записи, 3Ca3(PO4)2·Ca(OH)2 — основа костной ткани позвоночных, в том числе и человека; из карбоната кальция CaCO3 состоят раковины и панцири многих беспозвоночных, яичная скорлупа и др. В живых тканях человека и животных 1,4—2 % Ca (по массовой доле); в теле человека массой 70 кг содержание кальция — около 1,7 кг (в основном в составе межклеточного вещества костной ткани).

Происхождение и химические свойства красителя “белый мел”

Само название вещества говорит за себя: оно состоит из обычного белого мела, который содержит неорганический красящий пигмент. В живой природе краситель встречается в виде некоторых минералов: кальцита, ватерита или арагонита, в горных породах, например, в мраморе, известняке, травертине. Некоторые беспозвоночные (моллюски, губки) состоят из разнообразных форм карбоната кальция.

По своей химической структуре добавка Е170 – это соль каменноугольной кислоты, она отличается высокой устойчивостью к агрессивным средам, не растворяется в воде и спирте. Высокие температуры этой пищевой добавке тоже не страшны – температура плавления кальцита достигает 825 градусов Цельсия, арагонита – 1339 градусов. При нагревании до 900-1400 градусов Цельсия вещество расщепляется на углекислый газ и негашёную известь. Если все же необходимо получить раствор добавки с водой, в смесь добавляют углекислый газ. В результате такого взаимодействия образуется кислая соль.

Карбонат кальция добывают в процессе переработки природных отложений мела, а в промышленность и на производство он попадает уже в виде белого рассыпчатого порошка с мелкими гранулами, не имеющего вкуса и запаха. Самый высококачественный и безопасный краситель получают при обработке мрамора: полученное вещество отличается высокой устойчивостью ко многим видам обработки, оно является полностью гипоаллергенным и безвредным, поэтому его используют для окрашивания продуктов питания.

Для технических целей могут применять краситель, полученный путём кальцинации оксида кальция. Оксид соединяют с водой, после чего смесь подвергается обработке углекислым газом, в результате чего происходит осаждение вещества.

В производственных целях белый мел используется как:

  • стабилизатор, так как он способствует формированию и сохранению текстуры и консистенции товара;
  • разрыхлитель и вещество, препятствующее слёживанию и комкованию: карбонат кальция вводят в продукт в процессе приготовления, чтобы придать ему соответствующие физические свойства, сыпучесть и отсутствие комков;
  • регулятор кислотности, так как добавка способствует установлению и сохранению определённого уровня кислотной среды;
  • краситель, который придаёт привлекательный оттенок товарам.

Биологическая роль

Основная статья: Кальций в живых организмах

Кальций — распространённый макроэлемент в организме растений, животных и человека. В организме человека и других позвоночных большая его часть находится в скелете и зубах. В костях кальций содержится в виде гидроксиапатита. Из различных форм карбоната кальция (извести) состоят «скелеты» большинства групп беспозвоночных (губки, коралловые полипы, моллюски и др.). Ионы кальция участвуют в процессах свертывания крови, а также служат одним из универсальных вторичных посредников внутри клеток и регулируют самые разные внутриклеточные процессы — мышечное сокращение, экзоцитоз, в том числе секрецию гормонов и нейромедиаторов. Концентрация кальция в цитоплазме клеток человека составляет около 10−4 ммоль/л, в межклеточных жидкостях около 2,5 ммоль/л.

Потребность в кальции зависит от возраста. Для взрослых в возрасте 19—50 лет и детей 4—8 лет включительно дневная потребность (RDA) составляет 1000 мг, а для детей в возрасте от 9 до 18 лет включительно — 1300 мг в сутки

В подростковом возрасте потребление достаточного количества кальция очень важно из-за интенсивного роста скелета. Однако по данным исследований в США всего 11 % девочек и 31 % мальчиков в возрасте 12—19 лет достигают своих потребностей

В сбалансированной диете большая часть кальция (около 80 %) поступает в организм ребёнка с молочными продуктами. Оставшийся кальций приходится на зерновые (в том числе цельнозерновой хлеб и гречку), бобовые, апельсины, зелень, орехи. Всасывание кальция в кишечнике происходит двумя способами: через клетки кишечника (трансцеллюлярно) и межклеточно (парацелюллярно). Первый механизм опосредован действием активной формы витамина D (кальцитриола) и её кишечными рецепторами. Он играет большую роль при малом и умеренном потреблении кальция. При большем содержании кальция в диете основную роль начинает играть межклеточная абсорбция, которая связана с большим градиентом концентрации кальция. За счёт чрезклеточного механизма кальций всасывается в большей степени в двенадцатиперстной кишке (из-за наибольшей концентрации там рецепторов в кальцитриолу). За счёт межклеточного пассивного переноса абсорбция кальция наиболее активна во всех трёх отделах тонкого кишечника. Всасыванию кальция парацеллюлярно способствует лактоза (молочный сахар).

Усвоению кальция препятствуют некоторые животные жиры (включая жир коровьего молока и говяжий жир, но не сало) и пальмовое масло. Содержащиеся в таких жирах пальмитиновая и стеариновая жирные кислоты отщепляются при переваривании в кишечнике и в свободном виде прочно связывают кальций, образуя пальмитат кальция и стеарат кальция (нерастворимые мыла). В виде этого мыла со стулом теряется как кальций, так и жир. Этот механизм ответственен за снижение всасывания кальция, снижение минерализации костей и снижение косвенных показателей их прочности у младенцев при использовании детских смесей на основе пальмового масла (пальмового олеина). У таких детей образование кальциевых мыл в кишечнике ассоциируется с уплотнением стула, уменьшением его частоты, а также более частым срыгиванием и коликами.

Концентрация кальция в крови из-за её важности для большого числа жизненно важных процессов точно регулируется, и при правильном питании и достаточном потреблении обезжиренных молочных продуктов и витамина D дефицита не возникает. Длительный дефицит кальция и/или витамина D в диете приводит к увеличению риска остеопороза, а в младенчестве вызывает рахит

Избыточные дозы кальция и витамина D могут вызвать гиперкальцемию. Максимальная безопасная доза для взрослых в возрасте от 19 до 50 лет включительно составляет 2500 мг в сутки (около 340 г сыра Эдам).

Что такое карбонат кальция

Calcium carbonate или кальциевая соль угольной кислоты, СаСО3 – все это название одного вещества. Бикарбонат кальция содержит 40% кальция, служит антацидом и минеральной добавкой к пище. По фармакологическому действию отличается быстрой нейтрализацией кислоты желудка, относится к всасывающимся антацидам. По сравнению с невсасывающимися может вызвать кислотный рикошет – увеличение выработки соляной кислоты после окончания действия препарата.

Свойства

Внешне вещество представляет собой порошок или кристаллы белого цвета без вкуса и запаха. Свойства карбоната кальция: не растворяется водой, но растворим разведенной соляной или азотной кислотами. Процесс растворения сопровождается выделением углекислого газа. К лекарственным свойствам препарата относятся:

  • нейтрализация соляной кислоты;
  • снижение кислотности пищеварительного сока;
  • снижение активности остеокластов;
  • замедление резорбции костных тканей;
  • оптимизация электролитного баланса;
  • поставка кальция для свертывания крови, формировании костей, работы сердца, передачи нервных импульсов.

Показания к применению

Углекислый кальций для медицинской сферы имеет следующие лекарственные показания к применению:

  • изжога;
  • боли и дискомфорт области за грудиной;
  • профилактика остеопороза, рахита, кариеса;
  • при кариесе и рахите для лечения;
  • при гиперацидности желудочного сока, при заболеваниях пищеварительного тракта на ее фоне – гастриты, острые гастриты, острые дуодениты, язвы желудка, рефлюкс-эзофагиты, эрозии ЖКТ;
  • коррекция остеопороза;
  • лечение тетании, остеомаляции;
  • возросшая потребность в кальциевых препаратах – дефицит при беременности, во время кормления грудью, на этапе активного роста, при постменопаузе;
  • аллергические реакции, гипокальциемия – при дополнительной терапии.

Побочные действия карбоната кальция

При длительном применении карбоната кальция в организме могут накапливаться щелочные вещества, что, в свою очередь, вызывает повышение уровня pH в крови и тканях. При употреблении более 2 г кальция в сутки возникает гиперкальциемия или молочно-щелочной синдром, что сопровождается головной болью, слабостью, нарушением аппетита (иногда приводящего к анорексии), тошнотой, рвотой, запором, болью в животе, жаждой, полиурией, вялостью, болью в мышцах и суставах, нарушением сердечного ритма, поражением почек. При появлении вышеперечисленных симптомов обязательно нужно сделать промывание желудка, принять активированный уголь. Также необходима симптоматическая терапия с поддержанием жизненно важных функций. Кальций с магнием способен вызвать диарею, аллергические реакции, гипермагниемию, гиперкальциемию, в первую очередь у больных, страдающих почечной недостаточностью. Все симптомы проходят после прекращения приема препарата.

Противопоказания

Применения кальция карбоната не рекомендуется при гиперчувствительности пациенту к элементу или при гипокальциемии (при гипопаратиреозе, гиперпаратиреоидизме, костных метастазах, передозировке витамином Д). Противопоказан препарат при почечной остеодистрофии, миеломе, хронической почечной недостаточности, фенилкетонурии, саркоидозе и нефроуролитиазе. Запрещен прием более 2 г медикамента за день.

структура

Два аниона HCO показаны на верхнем изображении3— и катион Ca2+ взаимодействуя электростатически. Ca2+ в соответствии с изображением, оно должно быть расположено посередине, поскольку именно так HCO3— они не будут отталкивать друг друга из-за своих отрицательных зарядов.

Отрицательный заряд в HCO3— он делокализован между двумя атомами кислорода путем резонанса между карбонильной группой C = O и связью C-O-; в то время как в СО32-, Это делокализовано между тремя атомами кислорода, так как связь С-ОН депротонирована и поэтому может получить отрицательный заряд по резонансу.

Геометрию этих ионов можно рассматривать как сферы кальция, окруженные плоскими треугольниками карбонатов с гидрированным концом. С точки зрения соотношения размеров, кальций заметно меньше, чем ионы HCO3-.

Водные растворы

Ca (HCO)3)2 Он не может образовывать кристаллические твердые вещества, и он действительно состоит из водных растворов этой соли. В них ионы не одни, как на изображении, а окружены молекулами H.2О.

Как они взаимодействуют? Каждый ион окружен сферой гидратации, которая будет зависеть от металла, полярности и структуры растворенных частиц.

Ca2+ координируется с атомами кислорода воды с образованием акокомплекса Ca (OH)2)N2+, где n обычно считается равным шести; то есть «водный октаэдр» вокруг кальция.

Пока HCO анионы3— взаимодействовать с водородными связями (ИЛИ2СО-Н-ОН2) или с атомами водорода в воде в направлении отрицательного заряда делокализует (HOCO)2— H-OH, диполь-ионное взаимодействие).

Эти взаимодействия между Ca2+, HCO3— и вода настолько эффективна, что они делают бикарбонат кальция очень растворимым в этом растворителе; в отличие от CaCO3, в котором электростатические притяжения между Ca2+ и СО32- очень сильны, выпадают в осадок из водного раствора.

Помимо воды, есть молекулы СО2 вокруг, которые реагируют медленно, чтобы обеспечить больше HCO3— (в зависимости от значения pH).

Гипотетическое твердое тело

Пока что размеры и заряды ионов в Са (HCO)3)2, ни присутствие воды, объясните, почему не существует твердого соединения; то есть чистые кристаллы, которые можно охарактеризовать с помощью рентгеновской кристаллографии. Ca (HCO)3)2 это не что иное, как присутствующие в воде ионы, из которых продолжают расти кавернозные образования.

Да ка2+ и HCO3— они могут быть изолированы от воды, избегая следующей химической реакции:

Ca (HCO)3)2(aq) → CaCO3(s) + CO2(г) + Н2O (l)

Затем их можно сгруппировать в белое кристаллическое твердое вещество со стехиометрическими пропорциями 2: 1 (2HCO3/ 1Ca). Там нет никаких исследований о его структуре, но это можно сравнить с NaHCO3 (для бикарбоната магния, Mg (HCO)3)2, не существует как твердое вещество), или с CaCO3.

Стабильность: NaHCO3 против Ca (HCO)3)2

NaHCO3 кристаллизуется в моноклинной системе, и СаСО3 в тригональной (кальцит) и ромбической (арагонитовой) системах. Если Na был заменен+ для ча2+, кристаллическая сеть будет дестабилизирована большей разницей в размерах; то есть Na+ поскольку он меньше, он образует более стабильный кристалл с HCO3— по сравнению с Ca2+.

На самом деле, Ca (HCO)3)2(aq) нуждается в воде, чтобы испариться так, чтобы ее ионы могли быть сгруппированы в кристалле; но кристаллическая решетка этого не достаточно сильна, чтобы сделать это при комнатной температуре. Когда вода нагревается, происходит реакция разложения (уравнение выше).

Быть ионом Na+ в растворе это будет кристалл с HCO3— до его термического разложения.

Причина, почему Ca (HCO)3)2 он не кристаллизуется (теоретически), это происходит из-за разницы ионных радиусов или размеров его ионов, которые не могут образовывать стабильный кристалл до его разложения.

Ca (HCO)3)2 против CaCO3

Если с другой стороны, H был добавлен+ к кристаллическим структурам CaCO3, они бы резко изменили свои физические свойства. Возможно, его точки плавления заметно падают, и даже морфология кристаллов в конечном итоге изменяется.

Стоит ли пытаться синтезировать Са (HCO)3)2 Твердая? Трудности могут превзойти ожидания, и соль с низкой структурной стабильностью может не дать существенных дополнительных преимуществ в любом применении, где другие соли уже используются..

Структура

Термодинамически стабильная форма CaCO при нормальных условиях — шестиугольный β-CaCO, (минеральный кальцит). Другие формы могут быть подготовлены, более плотное, (2.83 g/cc) призматический λ-CaCO (минеральный арагонит) и μ-CaCO, произойдя как минерал vaterite. Форма арагонита может быть подготовлена осаждением при температурах выше 85 °C, форма vaterite может быть подготовлена осаждением в 60 °C. Кальцит содержит атомы кальция, скоординированные 6 атомами кислорода в арагоните, они скоординированы 9 атомами кислорода. vaterite структура не полностью понята. У MgCO карбоната магния есть структура кальцита, тогда как стронций и карбонат бария (SrCO и BaCO) принимают структуру арагонита, отражая их большие ионные радиусы.

кальция карбонат: основная информация о пестициде

Описание: Неорганическое вещество{сущность} со свойствами мультидействия, действующими как гербицид, фунгицид и/или микробиоцид.

Год официальной регистрации: —

Выпуск пестицидов на рынок (директива 91/414/ЕЭС), статус:

Статус Приложение 1
Досье докладчика / содокладчика Испания
Дата включения истекает 31/08/2019

Разрешен к применению (V) или известен (#) в следующих Европейских странах:

Основные сведения:

Тип пестицида Гербицид, Фунгицид, Микробиоцид, Составное вещество другого продукта
Другой тип pH adjuster; Carrier
Группа по химическому строению Неорганические соединения
Характер действия Защитный, запрещая грибковым спорам и болезнетворным микроорганизмам ввод ведущих тканей
Регистрационный номер CAS 471-34-1
Шифр КФ (Код Фермента) 207-439-9
Шифр Международного совместного аналитического совета по пестицидам (CIPAC) Не определен
Химический код Агентства по охране окружающей среды США (US EPA) 073502
Химическая формула CaCO3
SMILES .C()=O
Международный химический идентификатор (InChI) InChI=1/CH2O3.Ca/c2-1(3)4;/h(H2,2,3,4);/q;+2/p-2
Структурная формула
Молекулярная масса (г/моль) 100.09
Chemical Перевод calcium carbonate
Другая информация
Устойчивость к гербициду по HRAC Не определяется
Устойчивость к инсектициду по IRAC Не определяется
Устойчивость к фунгициду по FRAC Не определяется
Физическое состояние Белый порошок

Выпуск:

Производители пестицида
Коммерческие названия препаратов, содержащих д.в.
С этим веществом связаны:
Оценка риска от пестицида для местной экологии (Англия) No Великобритания approval for use
Препаративная форма и особенности применения

Воздействие на человеческий организм

Вещество является не просто безвредным, но и полезным для человека, так как имеет выраженные лечебные и противовоспалительные свойства. Его применение рекомендовано детям, беременным и кормящим женщинам, пожилым людям, тем, кто страдает рахитом, остеопорозом и другими нарушениями развития костной ткани.

Так как добавка при приёме внутрь способствует снижению кислотности в желудке, и оказывает обволакивающее действие, её можно употреблять людям с воспалительными и язвенными заболеваниями пищеварительного тракта.

В случае дефицита в организме кальция, белый мел вводят в рацион в виде биологически активных добавок и минеральных комплексов.

Кроме полезных свойств, карбонат кальция в некоторых случаях может оказывать и негативное влияние на здоровье. Его нельзя употреблять при наличии гиперкальцемии, так как в результате могут появляться тошнота, рвота, нарушение координации и боли в животе. При сильной передозировке может развиваться молочно-щелочная болезнь, которая сопровождается токсическим отравлением, а в особенно тяжелых случаях может повлечь летальный исход. Атеросклероз, тромбоз, почечная дисфункция и повышенная чувствительность к белому мелу являются противопоказаниями к его употреблению.

Лучшие материалы месяца

  • Коронавирусы: SARS-CoV-2 (COVID-19)
  • Антибиотики для профилактики и лечения COVID-19: на сколько эффективны
  • Самые распространенные «офисные» болезни
  • Убивает ли водка коронавирус
  • Как остаться живым на наших дорогах?

Дневная норма потребления вещества – 1,2-1,5 г в сутки для взрослого человека. В таком количестве оно не может нанести никакого вреда здоровью.

Следует помнить о том, что длительный приём добавки приводит к её накапливанию в тканях и клетках организма, а в результате уровень кислотности в организме может повышаться.

Применение карбоната кальция в качестве лечебного средства может проводиться только после консультации с врачом.

Как пищевой и технический краситель, стабилизатор, разрыхлитель и загуститель, добавка Е170 разрешена к применению в Украине, России, Канаде, США и практически всех странах Европейского союза, в Австралии и Великобритании. Полезные свойства карбоната кальция проложили ему путь в пищевую и фармацевтическую отрасль производства, а также в изготовление пластмасс, красок, стекла, бытовой химии. Натуральный белый мел добывается из природных пород, и очень ценится производителями за своё естественное происхождение, а также устойчивость к термообработке, кислотам и этанолу.

Больше свежей и актуальной информации о здоровье на нашем канале в Telegram. Подписывайтесь: https://t.me/foodandhealthru

Будем признательны, если воспользуетесь кнопочками:

Применение

Используется как белый пищевой краситель Е170. Являясь основой мела, используется для письма на школьных досках. Используется в быту для побелки потолков, покраски стволов деревьев, для подщелачивания почвы в садоводстве.

Использование в пищевой промышленности

  • Е170 учавствует в организме в процессах свертывания крови;
  • применяется в медицине как биологически активная добавка;
  • используется в приготовлении различных кондитерских кремов и хлеба;
  • используется в соевом молоке как часть кальциевой диеты;
  • применяется для окрашивания различных конфет (например, драже);
  • используется в качестве антислеживающего агента и разделителя в сухих молочных продуктах;
  • является антикристаллизатором в сгущеном молоке;
  • стабилизирует консистенцию джемов и желе;
  • вместе с другими карбонатами может применятся при изготовлении различных сыров (плавленных, домашних);
  • не дает выпасть осадку.

Массовое производство/использование

Таблетки из карбоната кальция

Очищенный от посторонних примесей, карбонат кальция широко используется в бумажной и пищевой промышленности, при производстве пластмасс, красок, резины, продукции бытовой химии, в строительстве. Производители бумаги используют карбонат кальция одновременно в качестве отбеливателя, наполнителя (заменяя им дорогостоящие волокна и красители), а также раскислителя. Производители стеклянной посуды, бутылок, стекловолокна используют карбонат кальция в огромных количествах в качестве источника кальция — одного из основных элементов, необходимых для производства стекла. Широко используется при производстве продукции личной гигиены (например, зубной пасты), и даже в медицинской промышленности. В пищевой промышленности часто используется в качестве антислеживающего агента и разделителя в сухих молочных продуктах. При употреблении сверх рекомендованной дозы (1,5 г в день) может вызывать молочно-щелочной синдром (синдром Бернетта). Рекомендован при болезнях костных тканей.

Производители пластмассы — одни из основных потребителей карбоната кальция (более 50 % всего потребления). Используемый в качестве наполнителя и красителя, карбонат кальция необходим при производстве поливинилхлорида (PVC), полиэфирных волокон (кримплен, лавсан, и т. п.), полиолефинов. Изделия из данных видов пластмасс распространены повсеместно — это трубы, сантехника, кафельная плитка, черепица, линолеум, ковровые покрытия, и т. п. Карбонат кальция составляет порядка 20 % красящего пигмента, используемого при производстве красок.

Строительство

Строительство — еще один из основных потребителей карбоната кальция. Шпатлевки, различные герметики — все они содержат карбонат кальция в значительных количествах. Также, карбонат кальция является важнейшим составным элементом при производстве продукции бытовой химии — средств для чистки сантехники, кремов для обуви.

Карбонат кальция также широко используется в очистительных системах, как средство борьбы с загрязнением окружающей среды, при помощи карбоната кальция восстанавливают кислотно-щелочной баланс почвы.

Химические свойства карбоната кальция. Химические реакции карбоната кальция:

Карбонат кальция – это средняя соль, образованная сильным основанием (гидроксид кальция Ca(OH)2) и слабой кислотой (угольная кислота H2CO3).

Водные растворы CaCO3 имеют слабую щелочную реакцию.

Химические свойства карбоната кальция аналогичны свойствам карбонатов других металлов. Поэтому для него характерны следующие химические реакции:

1. реакция термического разложения карбоната кальция – обжиг известняка:

CaCO3  → CaO + CO2 (t = 900-1200 °C).

В результате реакции образуются оксида кальция и оксид углерода (IV). Обжиг известняка – это промышленный способ получения углекислого газа. Технологически этот процесс в промышленности реализуют в специальных шахтных печах.

2. реакция карбоната кальция и углерода (графита, кокса):

CaCO3 + C → CaO + 2CO (t = 800-850 °C).

В результате реакции образуются оксид кальция и оксида углерода (II).

3. реакция карбоната кальция и фтороводорода:

CaCO3 + 2HF → CaF2 + CO2 + H2O.

В результате реакции образуются фторид кальция, оксид углерода (IV) и вода. При этом фтороводород в качестве исходного вещества используется в виде разбавленного раствора.

4. реакция взаимодействия карбоната кальция и сероводорода:

CaCO3 + H2S → CaS + H2O + CO2 (t = 900 °C).

В результате реакции образуются сульфид кальция, вода и оксид углерода (IV).

Аналогичные реакции протекают и с другими галогеноводородами.

5. реакция взаимодействия карбоната кальция и азотной кислоты:

CaCO3 + 2HNO3 → Ca(NO3)2 + CO2 + H2O.

В результате реакции образуются нитрат кальция, оксид углерода (IV) и вода.

6. реакция взаимодействия карбоната кальция и угольной кислоты:

CaCO3 + H2CO3 → Ca(HCO3)2.

В результате реакции образуется гидрокарбонат кальция.

7. реакция взаимодействия карбоната кальция и бромной кислоты:

CaCO3 + 2HBrO3 → Ca(BrO3)2 + H2O + CO2.

В результате реакции образуются бромат кальция, вода и оксид углерода (IV).

Аналогично проходят реакции карбоната кальция и с другими кислотами. 

8. реакция взаимодействия карбоната кальция, оксида углерода (IV) и воды:

CaCO3 + CO2 + H2O → Ca(HCO3)2.

В результате реакции образуется гидрокарбонат кальция. Реакция протекает при комнатной температуре.

9. реакция взаимодействия карбоната кальция и оксида кремния:

CaCO3 + SiO2 → CaSiO3 + CO2 (t ≈ 800 °C).

В результате реакции образуются метасиликат кальция и оксида углерода (IV).

10. реакция взаимодействия карбоната кальция и оксида титана:

CaCO3 + TiO2 → CaTiO3 + CO2 (t = 800-1100 °C).

В результате реакции образуются титанат кальция и оксида углерода (IV). Реакция протекает при сплавлении реакционной смеси.

11. реакция взаимодействия карбоната кальция, оксида серы и кислорода:

2CaCO3 + 2SO2 + O2 → 2CaSO4 + 2CO2.

В результате реакции образуются сульфат кальция и оксида углерода (IV). Данная реакция представляет собой метод очистки смеси газов от SO2.

12. реакция взаимодействия карбоната кальция, оксида свинца и кислорода:

4CaCO3 + 2PbO + O2 → 2Ca2PbO4 + 4CO2 (t ≈ 800 °C).

В результате реакции образуются ортоплюмбат кальция и оксида углерода (IV). Первоначально карбонат кальция и оксид свинца хорошо смешивают друг с другом. Смесь нагревают в трубке для сожжения в потоке воздуха, свободного от диоксида углерода, до среднекрасного каления (около 800°C). Температура не должна превышать 850°C.

13. реакция взаимодействия карбоната кальция и гидроксида натрия:

CaCO3 + 2NaOH → Na2CO3 + Ca(OH)2.

В результате реакции образуются карбонат натрия и гидроксид кальция. При этом гидроксид натрия в качестве исходного вещества используется в виде водного раствора.

14. реакция взаимодействия карбоната кальция и хлорида аммония:

CaCO3 + 2NH4Cl → CaCl2 + 2NH3 + H2O + CO2 (to).

В результате реакции образуются хлорид кальция, аммиак, вода и оксид углерода (IV). Реакция протекает при кипении.

15. реакция взаимодействия карбоната кальция и сульфида калия:

CaCO3 + K2S → K2CO3 + CaS (t ≈ 1200 °C).

В результате реакции образуются карбонат калия и сульфид кальция.

16. реакция взаимодействия карбоната кальция и сульфида натрия:

Na2S + CaCO3 →  Na2CO3 + CaS (t ≈ 1200 °C).

В результате реакции образуются карбонат натрия и сульфид кальция.

История и происхождение названия

Название элемента происходит от лат. calx (в родительном падеже calcis) — «известь», «мягкий камень». Оно было предложено английским химиком Гемфри Дэви, в 1808 г. выделившим металлический кальций электролитическим методом. Дэви подверг электролизу смесь влажной гашёной извести с оксидом ртути HgO на платиновой пластине, которая являлась анодом. Катодом служила платиновая проволока, погруженная в жидкую ртуть. В результате электролиза получалась амальгама кальция. Отогнав из неё ртуть, Дэви получил металл, названный кальцием.

Соединения кальция — известняк, мрамор, гипс (а также известь — продукт обжига известняка) применялись в строительном деле уже несколько тысячелетий назад. Вплоть до конца XVIII века химики считали известь простым телом. В 1789 году А. Лавуазье предположил, что известь, магнезия, барит, глинозём и кремнезём — вещества сложные.

Комментарии для сайта Cackle