Худей и больше не толстей

Царство вирусов

Вирусная форма жизни

Как уже говорилось выше, вирус не может существовать вне клетки живого организма, так как не имеет собственного обмена веществ. Для синтеза собственных молекул ему нужна клетка-хозяин. Вне такой клетки вирус ведет себя как частица биополимера и не проявляет признаков живого существа.

Пока вирус находится вне клетки, он существует в виде независимой частицы. Размер этой частицы настолько мал, что разглядеть в простой световой микроскоп большую часть вирусов просто невозможно. Его размер примерно в 100 раз меньше размера бактерии, а форма варьируется от просто спиральной до более сложных структур. Одна их форм похожа на корону. Именно она и является тем самым коронавирусом.

Некоторые ученые называют вирус организмами на грани живого. С одной стороны, они не живые, но с другой, могут размножаться, эволюционировать и вести жизнедеятельность, хоть и за счет внешнего питания белковыми структурами клетки-хозяина.

Основу жизненного цикла вируса составляет всего несколько этапов. Первый называется прикрепление. На этом этапе создаются связи между белками вирусного капсида и поверхности клетки-хозяина. Иногда вирусы взаимодействуют только с определенными клетками, как, например, ВИЧ с лейкоцитами.

На втором этапе происходит проникновение в клетку-хозяина. После этого вирус освобождается от своего капсида. Проще говоря, он вылезает из своей оболочки и запускает свой геном в клетку. Способ освобождение от капсида бывает разным. Оболочка может растворяться ферментами самого вируса или делать это за счет элементов внутри клетки.

После этого вирус реплицируется (размножается), синтезируя ранние гены вируса. Далее он собирается в структуры и на последнем этапе покидает клетку после ее гибели. Зачастую, это происходит из-за разрыва клеточной мембраны.

Таким образом вирус проникает в клетку и высвобождает свой геном.

Многие вирусы не приводят к разрушению клеток и до определенного времени никак себя не проявляют. Они могут годами существовать внутри клетки, вызывая хронические заболевания. Примерами таких вирусов может быть герпес, который проявляется только при определенном сочетании факторов, или папилломавирус, который в некоторых случаях может приводить к развитию онкологических заболеваний. Еще одним примером таких вирусов является вирус Эпшейн-Барра. Он приводит к ускоренному делению клеток, но без признаков злокачественности.

Откуда взялся вирус

Многих интересует вопрос, откуда вообще взялись вирусы, то есть, как они появились и откуда пошли. На этот вопрос нет однозначного мнения, но есть три основные гипотезы.

Первая гипотеза называется регрессивной (также ее называют гипотезой редукции или дегенерации). Согласно ей сначала были небольшие клетки, которые паразитировали на более крупных живых организмах. Позже эти бактерии упростились, лишившись функций, которые не нужны для паразитирующего образа жизни. Доказательством этой гипотезы является существование риккетсий и хламидий. Они являются бактериями по сути, но ведут себя как вирусы, размножаясь только внутри живой клетки с ее белковыми структурами.

Вторая гипотеза называется гипотезой клеточного происхождения. Согласно ей вирусы вышли из генома более крупного организма. Не вдаваясь в подробности, в ДНК есть молекулы, которые могут перемещаться от клетки к клетке или внутри генома. Именно эта молекула и могла мутировать и выделится в то, что стало вирусом.

Присмотритесь, возможно тут есть вирус.

Третья гипотеза заключается в том, что вирусы появились на заре существования жизни, то есть примерно в одно время с зарождением клеточной жизни. При этом именно к этой теории склоняются многие исследователи. Хотя, споры не утихают и до сих пор однозначного ответа на вопрос, откуда взялся вирус, пока нет.

История вирусов

Выше я говорил о том, что есть вирусы, которые позволяют бороться с бактериями. Это делает некоторые виды вирусов потенциальными средствами борьбы с заболеваниями вроде тифа и холеры. Подобные эксперименты проводились, в том числе, английским бактериологом Фредериком Туортом в начале двадцатого века, который и открыл такие свойства вирусов. Интересно то, что в тот момент эти исследования потеряли смысл из-за того, что был изобретен пенициллин, который очень удачно боролся со многими возбудителями заболеваний.

Опасность вирусов нельзя недооценить. Некоторые из них смертельные.

Интересным свойством вируса, которое было открыто еще в девятнадцатом веке, стало то, что для выживания и размножения ему нужен живой организм. Позже ученые смогли выращивать вирусы для производства вакцины на лимфе, суспензии из куриных почек или на фрагментах ткани роговицы морских свинок. Такие вирусы выращивались для создания вакцины. Аналогичные исследования производятся до сих пор.

Первый эксперимент на тканях зародыша человека провели в 1949 году Джон Франклин Эндерс, Томас Уэллер и Фредерик Роббинс. Они получили полиовирус, впервые выращенный не на тканях животных или яйцах. Чуть позже это дало возможность Джонасу Солку создать эффективную вакцину против полиомиелита (полиовакцину).

На заре поиска вирусов многие ученые думали, что вирусы являются жидкостями, так как их нельзя увидеть в микроскоп. Были мнения, что это частицы, просто очень мелкие, но доказать это было сложно. Доказано это было только с появлением электронных микроскопов. Тогда же были получены и первые изображения вирусов, позволившие много узнать об их структуре.

Вообще, золотым веком вирусологии была вторая половина двадцатого века. В это время не только были открыты около 2000 видов вирусов и дано их описание, но и изобретены вакцины от многих из них. Правда, многие вирусы до сих пор не могут быть побеждены. В частности ретровирус и самый известный их представитель ВИЧ, выделенный в 1983 году группой учёных во главе с Люком Монтанье из Института Пастера во Франции.

Чем опасны реликтовые вирусы

При этом такая “вирусная информация” не является безопасной, так как существует механизм обратной транскрипции, открытый в 1970 году двумя нобелевскими лауреатами, американскими учеными Говардом Темином и Дэвидом Балтимором. Благодаря такому механизм, вирусы могут возвращаться в мутировавшем виде, возможно, даже в виде супервируса, который вызовет глобальную эпидемию. Вирус как бы говорит: “Это не моя война”. После чего все равно берет пулемет и идет воевать.

Взгляд вируса, который ушел в отставку, но ему сказали, что надо вернуться.

Часто такое “восстание” производится за счет некой кооперации вирусов. Раньше она считалась невозможной, но теперь доказано обратное. Реально существующий вирус попадает в организм, а реликтовый вирус, содержащийся в ДНК, например, снабжает его белковыми структурами.

Именно из-за наличия в ДНК живых организмов реликтовых вирусов многие ученые категорически выступают против пересадки органов от животных человеку. Такое объединение тканей может поспособствовать появлению супервируса, который победить будет просто невозможно.

[править] Классификация

В таксономии живой природы вирусы выделяются в отдельный таксон Vira, образующий в классификации Systema Naturae 2000 вместе с доменами Bacteria, Archaea и Eukaryota корневой таксон Biota. На протяжении XX века в систематике выдвигались предложения о создании выделенного таксона для неклеточных форм жизни (Aphanobionta Novak, 1930; надцарство Acytota Jeffrey, 1971; Acellularia), однако такие предложения не кодифицировано.

Вирусы классифицируются на содержащие ДНК (вирус простого герпеса) и содержащие РНК (вирус иммунодефицита человека). По структуре капсомеров. Изометрические (кубические), спиральные, смешанные. По наличию или отсутствию дополнительной липопротеиновой оболочки (суперкапсида) вирусы делятся на простые и сложные. За клетками-хозяевами Наиболее применяемая в настоящее время классификация вирусов предложена лауреатом Нобелевской премии Дэвидом Балтимором . Она построена на типе нуклеиновой кислоты, используется вирусом для переноса наследственного материала, и на том, каким путем происходит ее экспрессия и репликация. Стоит отметить, что такая классификация не отражает филогенетические связи между видами вирусов, так как вирусы, согласно общепринятым сейчас взглядом, имеют механизмы происхождения, отличные от всех других организмов.

В отличие от клеточных организмов, генетическая информация которых хранится в виде двухцепочечной ДНК, геном вируса может сохраняться как в виде двух-, так одноцепочечной нуклеиновой кислоты . При этом этой кислотой может быть как ДНК, так и РНК, матричная форма которой (м-РНК) используется в клетках как промежуточный продукт при трансляции генетической информации в процессе синтеза протеинов. РНК-геномы вирусов могут быть закодированы в двух противоположных направлениях: или гены расположены в направлении от 5′-конца молекулы к 3′-конца (положительное направление, или + полярность), аналогично направлении расположения генов в м-РНК в клетках, или гены вирусного генома расположены в противоположном направлении (отрицательный направление или -полярность).

Таксономия вирусов в основных чертах похожа на таксономию клеточных организмов. Таксономические категории, используемые в классификации вирусов, такие (в скобках приведены суффиксы для образования латинских названий):

  • Отряд (-virales)
  • Семейство (-viridae)
  • Подсемейство (-virinae)
  • Род (-virus)
  • Вид

Но в номенклатуре вирусов есть и некоторые особенности, отличающие ее от номенклатуры клеточных организмов. Во-первых, названия не только видов и родов, но также рядов и семей пишутся курсивом; во-вторых, в отличие от классической линнеевськои номенклатуры, названия вирусов не является биноминальной.

Всего в настоящее время описано около 80 семейств, в которые входят примерно 4000 отдельных видов вирусов.

Распределение семей на ряды начался недавно и происходит медленно; в настоящее время выделены и описаны диагностические признаки только 3 рядов, и большинство описанных семей является неклассифицированными.

Вирусные заболевания – что такое?

Заболевания, вызванные вирусами, в основном проявляются в результате ослабления иммунной системы и повышения температуры, когда образуется благоприятное состояние, чтобы вирусные болезни человека получили дальнейшее развитие после проникновения патогенных микроэлементов. Заболевания развиваются в результате проникновения в клетки организма человека вирусов, когда они начинают активно размножатся, паразитируя на разных зонах тела, используя их как питательный субстрат. Вирусы в итоге своей жизнедеятельности, вызывают гибель клеток, что предшествует проявлению клинической симптоматики заболевания.

Происхождение и строение

Существует несколько гипотез происхождения вирусов. Наука предлагает версию о возникновении вирусов из фрагментов РНК и ДНК, которые высвободились от крупного организма.

Регрессивная гипотеза утверждает, что вирусы – это паразитарные организмы с мелкими клетками, которые размножаются в более крупных видах, однако в период эволюции потеряли гены, требующиеся для паразитарной формы выживания.

Коэволюция предполагает, что вирусы появились одновременно с живыми клетками в результате построения непростых наборов нуклеиновых кислот и белков.

Вопросы о том, какое строение вируса, как он размножается и передается, изучаются специальным разделом микробиологии — вирусологией.

Каждая вирусная частица имеет генетическую информацию (РНК или ДНК) и белковую мембрану (капсид), которая выступает в качестве защиты.

Вирусы бывают разных форм, различают от простого спирального вида до икосаэдрического. Стандартная величина составляет приблизительно 1/100 величины средней бактерии. Однако большинство вирусов имеют очень маленькие размеры, что затрудняет их исследование под микроскопом.

Структура, строение и функционирование вируса

В отличие от клеточных организмов, вирусные частицы не содержат всех биохимических механизмов для своей собственной репликации. Увидеть их можно только через электронный микроскоп. Они настолько малы, что могут проходить через бактериальные фильтры.

Это означает, что большинство вирусных частиц находятся далеко за пределами возможностей обычного светового микроскопа. Кроме того, они являются облигатными паразитами на клетках животных или растений, то есть сущностями, не способными к жизни вне организма хозяина.

Структура вируса зависит от того, какой вид служит его хозяином. Вирус, который реплицируется в клетках млекопитающих, будет иметь белковую оболочку, которая позволяет ему прикрепляться к клеткам млекопитающих и проникать в них. Форма, структура и функции этих белков изменяются в зависимости от вида вируса.

Несмотря на свою простоту строения, они все  всеми признаками жизни:

  • способностью размножаться;
  • наследственностью;
  • изменчивостью;
  • приспособляемостью к условиям окружающей среды;
  • они занимают определенную экологическую нишу в природе;
  • на них распространяются законы эволюции органического мира.

Однако организмами их назвать нельзя, так как они не обладают своими собственными системами, которые синтезируют белок.

Нуклеиновая кислота образует центр вирусной частицы. Обычно это ДНК — у животных вирусов и бактериофагов, РНК — в вирусе, поражающим растения. Эта нуклеиновая кислота, образующая центральную часть, окружена белковой оболочкой, называемой капсидом.

Размножение (репликация) вируса происходит после того, как он внедряется, или заражает совместимую клетку, то есть когда РНК вируса атакует клетку растения, а ДНК-содержащий вирус заражает клетку животного. Размножение или весь жизненный цикл вирусных частиц происходит в четыре этапа:

  1. Фаза заражения: здесь вирусная частица прикрепляется к клетке, вводит вирусный геном в клетку-хозяина.
  2. Фаза затмения: здесь вирусная ДНК берет под контроль хромосомный механизм клетки и направляет его на производство различных частей вирусной частицы.
  3. Вегетативная фаза: на этой стадии образующиеся компоненты вируса собираются вместе, образуя новые вирусы с ДНК в качестве их ядра и окружающей его белковой капсулой.
  4. Литическая фаза: новые вирусные частицы инициируют разрушение клетки бактерии и таким образом высвобождаются из нее.

Когда полная вирусная частица (вирион) входит в контакт с клеткой-хозяином, капсид разрушается, и в клетку входит только вирусная нуклеиновая кислота (ДНК или РНК) а, в случаях с некоторыми другими вирусами, вводятся несколько ферментов.

Вирусы также могут обладать дополнительными компонентами, причем наиболее распространенным из них является дополнительный мембранный слой, окружающий нуклеокапсид, называемый оболочкой. Оболочка фактически приобретается из ядерной или плазматической мембраны инфицированной клетки-хозяина, а затем модифицируется вирусными белками, называемыми пепломерами. Некоторые вирусы содержат вирусные ферменты, которые необходимы для инфицирования клетки-хозяина. Они кодируются в вирусном геноме.

Ядро вириона — его инфекционность (информативность), а капсид — специфичность. Некоторые вирионы имеют капсид, который дополнительно имеет жировую мембрану, и в этом случае вирион может быть разрушен жирными растворителями.

Многие вирионы имеют форму сферы, а некоторые имеют форму сложных геометрических фигур, и нуклеиновая кислота плотно свернута внутри их. Другие типы вирионов имеют капсид, поверхность которого состоит из шипов, а нуклеиновая кислота свободно свернута внутри. Вирионы, контактирующие с множеством представителей растительного мира, представляют собой палочковидную форму. В таком случае, капсид — голый цилиндр, а нуклеиновая кислота представляется в виде прямого или спирального стержня.

Виды

Вирусные заболевания проявляются абсолютно по-разному, что связано с видом внеклеточного агента, вызвавшего болезнь, с местом локализации, со скоростью развития патологии. Вирусы человека классифицируются как смертельные и вялотекущие. Последние опасны тем, что симптоматика бывает невыраженной или слабой, и обнаружить проблему быстро не удается. За это время патогенный организм может размножаться и стать причиной серьезных осложнений.

Ниже представлен перечень основных видов вирусов человека. Он позволяет уточнить, какие вирусы есть и какие именно патогенные микроорганизмы вызывают опасные для здоровья заболевания:

  1. Ортомиксовирусы. Сюда входят все типы вирусов гриппа. Узнать, какой вирус гриппа вызвал патологическое состояние, помогут специальные анализы.
  2. Аденовирусы и риновирусы. Поражают дыхательную систему, вызывают ОРВИ. Признаки заболевания схожи с гриппом, могут стать причиной таких тяжелых осложнений, как пневмония, бронхит.
  3. Герпесвирусы. Активизируются на фоне сниженного иммунитета.
  4. Менингит. Патологию вызывают менингококки. Поражается слизистая головного мозга, питательным субстратом для патогенного организма является ликвор.
  5. Энцефалит. Оказывает негативное воздействие на оболочку головного мозга, вызывая необратимые изменения ЦНС.
  6. Парвовирус. Вызванные этим вирусом заболевания очень опасны. У пациента наблюдаются судороги, воспаление спинного мозга, паралич.
  7. Пикорнавирусы. Вызывают гепатиты.
  8. Ортомиксовирусы. Провоцируют паротит, корь, парагрипп.
  9. Ротавирус. Внеклеточный агент вызывает энтерит, кишечный грипп, гастроэнтерит.
  10. Рабдовирусы. Являются возбудителями бешенства.
  11. Паповирусы. Вызывают папилломатоз у человека.

Ретровирусы. Являются возбудителями ВИЧ, а после и СПИДа.

Молекулярная структура вирусов. Вирион. Особенности упаковки нуклеокапсида. Особенности структуры генома вирусов. Основные этапы взаимодействия вируса с клеткой.

Основой таксономии
вирусов является вирион, который
представляет собой конеч­ную фазу
развития вируса. Вирион состоит из
геномной нуклеиновой кислоты, окру­женной
одной или двумя оболочками. По строению
вирусы можно разделить на четыре типа,
которые различаются по характеру
упаковки морфологических субъединиц:

1)вирусы со спиральной
симметрией;

2)изометрические
вирусы с кубической симметрией;

3)вирусы с бинарной
симметрией, например фаги: у них головка
имеет кубиче­ский тип симметрии, а
хвостик — спиральный;

4)более сложно
организованные вирусы, имеющие вторую
оболочку.

Оболочка, в которую
упакована геномная нуклеиновая кислота,
называется капсидом. Наиболее просто
организованные вирусы представляют
собой нуклеокапсиды: они состоят только
из нуклеиновой кислоты и белковой
оболочки, построенной из идентичных
пептидных молекул. Поскольку число
ами­нокислотных остатков в белковой
молекуле всегда меньше числа нуклеотидов
в ге­не (код триплетный), то для того,
чтобы упаковать геномную нуклеиновую
кислоту, требуется большое число
одинаковых белковых молекул. А многократное
повторе­ние белок-белковых взаимодействий
возможно лишь при условии симметричного
расположения субъединиц. Существует
всего два способа упаковки одинаковых
бел­ковых молекул в капсид, при которых
он обладал бы стабильностью. Полимер
будет стабильным, если он соответствует
наименьшему уровню свободной энергии.
Про­цесс образования такого полимера
родствен процессу кристаллизации, он
протекает по типу самосборки. Один из
вариантов такой самосборки происходит
с использова­нием спиральной симметрии,
другой — кубической симметрии.

При спиральной
симметрии (ее имеют нитевидные вирусы)
белковые субъеди­ницы располагаются
по спирали, а между ними, также по спирали,
уложена геном­ная нуклеиновая кислота.

При спиральной
симметрии белковый чехол лучше защищает
геномную нук­леиновую кислоту, но при
этом требуется большее количество
белка, чем при ку­бической симметрии.
Большинство вирусов с замкнутым чехлом
обладает куби­ческой симметрией. В
ее основе лежат различные комбинации
равносторонних треугольников, образующихся
из сочетания шаровидных белковых
субъединиц. Сочетаясь определенным
образом друг с другом, они могут
формировать замкну­тую сферическую
поверхность. Из различных сочетаний
равносторонних тре­угольников, которые
образуют общую вершину и общую ось
симметрии, могут возникать различные
варианты многогранников: тетраэдры,
октаэдры и икосаэд­ры.

Типы
взаимодействия вируса с клеткой.
Различают
три типа взаимодействия вируса с клеткой:
продуктивный, абортивный и ин-тегративный.

Продуктивный
тип

завершается обра­зованием нового
поколения вирионов и ги­белью (лизисом)
зараженных клеток (цитоли-тическая
форма). Некоторые вирусы выходят из
клеток, не разрушая их (нецитолитическая
форма).

Абортивный
тип

не завершается обра­зованием новых
вирионов, поскольку инфек­ционный
процесс в клетке прерывается на одном
из этапов.

Интегративный
тип, или
вирогения
— характеризуется встраиванием
(интеграцией) вирусной ДНК в виде
провируса в хромосому клетки и их
совместным сосуществованием (совместная
репликация).

Основные этапы
взаимодействия вируса с клеткой:

1)
адсорбция вируса на клетке;

2) проникновение
вируса в клетку;

3) «раздевание»
вируса;

4) биосинтез
вирусных компонентов в клетке;

5) формирование
вирусов;
выход
вирусов из клетки.

Борьба с вирусами

В начале XI в. доктора Индии и Китая уже знали о том, что у человека выработается стойкая невосприимчивость к черной оспе, если он получит небольшое количество вакцины, т.е. микроорганизмов, которые при введении в организм не могут вызвать заболевание, но обеспечат выработку антител.

Так, китайские и индийские врачи либо вводили небольшое количество измельченной кожи с ранки больного в маленький разрез на коже здорового человека, либо предлагали вдыхать эти частицы. Таким образом у здорового человека начинали вырабатываться защитные антитела, способные бороться с вирусом черной оспы. К началу XV в. этот метод широко применялся на всей территории Османской империи и Восточной Африки.

Европейские врачи начали использовать такой способ вакцинации против черной оспы только в XVIII в. К концу XIX в. в Англии и Франции появилась игла для подкожных инъекций, при помощи которой доктора вводили вакцины против известных на то время вирусов в руку или ногу человека. Однако такой способ борьбы действует далеко не на все вирусы. Например, микроорганизмы, вызывающие гепатит или грипп, развиваются и меняются настолько быстро, что старые антитела не могут справиться с новыми формами этих вирусов. В настоящее время создано большое количество вакцин против различных вирусных заболеваний: гепатита, бешенства, дифтерии, столбняка и др.

Вирус гриппа

Иммунная система представляет собой органы, ткани и клетки, совокупная работа которых направлена на защиту организма от различных заболеваний. Что же происходит в случае попадания в организм чужеродных веществ? Допустим, ты поцарапался о гвоздь. Можно сказать, что гвоздь прошел через первый барьер иммунной системы — твою кожу. Все бактерии, которые находились возле этого места, незамедлительно воспользовались возможностью и проникли в рану.

Первыми в борьбу с бактериями вступают клетки-макрофаги. Они полностью поглощают чужеродные тела и заключают их в оболочку. Далее к процессу уничтожения подключаются и другие клетки, стоящие на страже иммунной системы. Умные клетки сами решают, с кем им предстоит бороться: с вирусом или бактериями. В нашем случае все силы организма будут направлены на борьбу с бактериями. На последнем этапе этого сражения подключаются антитела — крохотные белки, которые полностью обезвреживают чужеродные частицы.

Вакцинация

В течение столетий вирус натуральной оспы поражал огромное количество людей. Эпидемии ежегодно уносили множество человеческих жизней до тех пор, пока английский врач Эдвард Дженнер не разработал первую в мире вакцину против натуральной оспы. К концу XVIII в. люди уже знали, что коровья оспа не представляет опасности для человека (на коже всего лишь появлялось несколько пузырьков), более того, люди, переболевшие коровьей оспой, редко заражались оспой натуральной.

Врач Эдвард Дженнер делает мальчику прививку от натуральной оспы

В 1796 г. Дженнер перенес содержимое кожного высыпания у женщины, заразившейся коровьей оспой, в царапину на руке здорового мальчика. Вокруг надреза появились краснота и нарывы, повысилась температура, однако спустя несколько дней недомогание полностью прекратилось. Через полтора месяца Дженнер сделал этому мальчику повторную прививку человеческой оспы, и ребенок не заболел.

Комментарии для сайта Cackle